

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

Sample ID: SA-240425-39 Batch: 19APR2024-GE Type: Finished Product - I Aatrix: Concentrate - Dist Jnit Mass (g):	nhalable	Received: 04/30 Completed: 05/		Client 3Chi 275 Medical I Carmel, IN 46 USA Lic, #: 18_023!	5082
	Render State		Summa Test Cannabinoid Heavy Metal Microbials Mycotoxins Pesticides Residual Sol Terpenes	Date Tested 05/13/2024 ls 05/08/2024 05/07/2024 05/09/2024 05/09/2024	Status Tested Tested Tested Tested Tested Tested
ND	92.6 %	97.2 %	Not Tested	Not Tested	Yes
Total ∆9-THC	Δ8-THC	Total Cannabinoids	Moisture Conte	ent Foreign Matter	Internal Standard Normalization
Cannabinoids b	-				
Analyte	L	OD %)	LOQ (%) 0.0284	Result (%) ND	Result (mg/g) ND
Analyte	L(('	OD %) 0095	(%)	(%)	(mg/g)
BC BCA	L((' 0.0 0.0	OD %) 0095	(%) 0.0284	(%) ND	(mg/g) ND
BC BCA BCV	L(() 0.0 0.0 0.0	OD %) 0095 0181 006	(%) 0.0284 0.0543	(%) ND ND	(mg/g) ND ND
BC BCA BCV BD	L((' 0.0 0.0 0.0 0.0	OD %) 0095 0181 006	(%) 0.0284 0.0543 0.018	(%) ND ND ND	(mg/g) ND ND ND
malyte BC BCA BCV BD BDA	L(() 0.0 0.0 0.0 0.0 0.0	OD %) 0095 0181 006 0081	(%) 0.0284 0.0543 0.018 0.0242	(%) ND ND ND ND	(mg/g) ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV	L(() 0.0 0.0 0.0 0.0 0.0 0.0	OD %) 0095 0181 006 0081 0043 0061	(%) 0.0284 0.0543 0.018 0.0242 0.013	(%) ND ND ND ND ND	(mg/g) ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA	L(() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OD %) 0095 0181 006 0081 0043 0061	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182	(%) ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG		OD %) 0095 0181 006 0081 0043 0061 00021	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063	(%) ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND
Analyte BC BCA BCV BD BDA BDV BDVA BCA BC BCA	L (() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OD %) 0095 0181 006 0081 0043 0061 0021 0057 0049	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172	(%) ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG CBGA CBL	L(() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OD %) 0095 0181 006 0081 0043 0061 0021 0057 0049	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
BC BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BL BLA	L(() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OD %) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND ND ND
Analyte BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BL BLA BN	L (() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OD %) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Analyte BC BCA BCV BDA BDA BDV BDVA BDVA BC BCA BCA BL BLA BN BNA	L(() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OD %) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 008	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
Analyte BC BCA BCV BD BDA BDA BDV BDVA BDV BDVA BC BCA BL BLA BLA BN BNA BT 44,8-iso-THC	L (() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 008 0076	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND ND ND 2.70 ND 2.06 25.3
Analyte BC BCA BCA BCV BDA BDA BDV BDVA BDVA BC BCA BCA BL BLA BLA BNA BNA BNA BT 44,8-iso-THC B-iso-THC	L (() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 008 007 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.02	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND ND 2.70 ND 2.70 ND 2.06 25.3 11.7
Analyte BC BCA BCA BCV BDA BDA BDV BDVA BDVA BC BCA BL BLA BLA BLA BNA BNA BNA BT 44,8-iso-THC A8-iso-THC A8-THC	L (() 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 0081 0057 0049 0112 0124 0056 0067 0067 0067 0067 0104	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND ND 2.70 ND 2.70 ND 2.06 25.3 11.7 926
Analyte	L (() () () () () () () () () () () () ()	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 0081 0057 0049 0112 0124 0056 0067 0067 0067 0067 0104 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Cannabinoids b Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBG CBCA CBL CBLA CBLA CBN CBNA CBT A4,8-iso-THC A8-iso-THC A8-THC A8-THCV A9-THC	L (() () () () () () () () () () () () ()	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 0081 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0076	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.027	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBCV CBDVA CBC	L ()))))))))))))))))))	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 008 0067 0067 0067 0067 0067 0067 0067 0067 0067 0067 0076 0084	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.027 0.0251	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Analyte	L () () () () () () () () () () () () ()	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 0081 0067 0076 0084 0069	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0212 0.02 0.0212 0.0251 0.0206	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBC	L () () () () () () () () () () () () ()	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 008 0067 0069 0062	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0212 0.02 0.0212 0.02 0.0212 0.0251 0.0206 0.0186	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Analyte	L () () () () () () () () () () () () ()	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 0081 0067 0076 0084 0069	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0212 0.02 0.0212 0.0251 0.0206	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBC	L () () () () () () () () () () () () ()	%) 0095 0181 006 0081 0043 0061 0021 0057 0049 0112 0124 0056 006 008 0067 0069 0062	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0212 0.02 0.0212 0.02 0.0212 0.0251 0.0206 0.0186	(%) ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND ND ND ND ND ND ND ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 05/13/2024

Tested By: Nicholas Howard

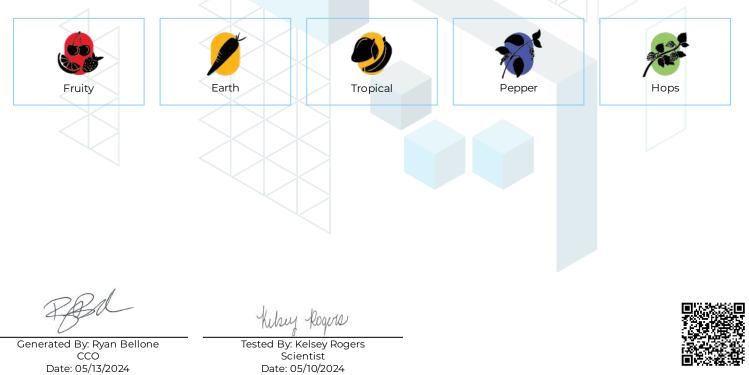
sted By: Nicholas Howard Scientist Date: 05/13/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato


Sample ID: SA-240425-39149 Batch: 19APR2024-GE Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 04/30/2024 Completed: 05/13/2024 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Terpenes by GC-MS

icipence by do							
Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.002	0.01	ND	Limonene	0.002	0.01	0.447
(+)-Borneol	0.002	0.01	ND	Linalool	0.002	0.01	0.171
Camphene	0.002	0.01	ND	β-myrcene	0.002	0.01	0.487
Camphor	0.004	0.02	ND	Nerol	0.002	0.01	ND
3-Carene	0.002	0.01	ND	cis-Nerolidol	0.002	0.01	ND
β -Caryophyllene	0.002	0.01	0.468	trans-Nerolidol	0.002	0.01	ND
Caryophyllene Oxide	0.002	0.01	0.0225	Ocimene	0.002	0.01	0.302
α -Cedrene	0.002	0.01	ND	α -Phellandrene	0.002	0.01	ND
Cedrol	0.002	0.01	ND	α -Pinene	0.002	0.01	0.17
Eucalyptol	0.002	0.01	ND	β-Pinene	0.002	0.01	0.0101
Fenchone	0.004	0.02	ND	Pulegone	0.002	0.01	ND
Fenchyl Alcohol	0.002	0.01	<loq< td=""><td>Sabinene</td><td>0.002</td><td>0.01</td><td>ND</td></loq<>	Sabinene	0.002	0.01	ND
Geraniol	0.002	0.01	ND	Sabinene Hydrate	0.002	0.01	ND
Geranyl Acetate	0.002	0.01	ND	α -Terpinene	0.002	0.01	ND
Guaiol	0.002	0.01	ND	γ-Terpinene	0.002	0.01	<loq< td=""></loq<>
Hexahydrothymol	0.002	0.01	ND	α -Terpineol	0.001	0.005	<loq< td=""></loq<>
α -Humulene	0.002	0.01	0.179	γ-Terpineol	0.001	0.005	ND
Isoborneol	0.002	0.01	ND	Terpinolene	0.002	0.01	0.412
lsopulegol	0.002	0.01	ND	Valencene	0.002	0.01	ND
				Total Terpenes (%)			2.68

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

Sample ID: SA-24042 Batch: 19APR2024-G Type: Finished Produ Matrix: Concentrate - Unit Mass (g):	E ct - Inhalable	Received: 04/30/2024 Completed: 05/13/2024	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #:18_0235
Heavy Metals	s by ICP-MS		
Heavy Metals	s by ICP-MS	LOQ (ppm)	Result (ppm)
		LOQ (ppm) 0.02	Result (ppm)
Analyte	LOD (ppm)		
Analyte Arsenic	LOD (ppm) 0.002	0.02	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/13/2024

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 05/08/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

Sample ID: SA-240425-39149 Batch: 19APR2024-GE Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 04/30/2024 Completed: 05/13/2024 **Client** 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

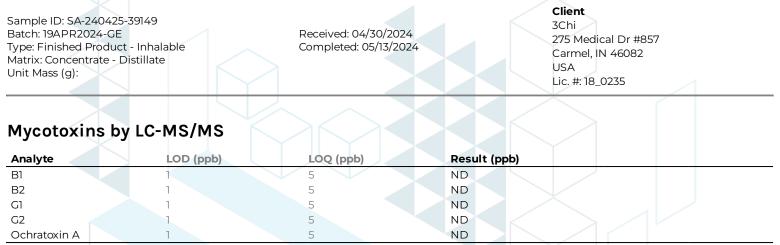
Pesticides by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acetamiprid	30	100	ND	Imidacloprid	30	100	ND
Aldicarb	30	100	ND	Kresoxim methyl	30	100	ND
Azoxystrobin	30	100	ND	Malathion	30	100	ND
Bifenazate	30	100	ND	Metalaxyl	30	100	ND
Bifenthrin	30	100	ND	Methiocarb	30	100	ND
Boscalid	30	100	ND	Methomyl	30	100	ND
Carbaryl	30	100	ND	Mevinphos	30	100	ND
Carbofuran	30	100	ND	Myclobutanil	30	100	ND
Chloranthraniliprole	30	100	ND	Naled	30	100	ND
Chlorfenapyr	30	100	ND	Oxamyl	30	100	ND
Chlorpyrifos	30	100	ND	Paclobutrazol	30	100	ND
Clofentezine	30	100	ND	Permethrin	30	100	ND
Coumaphos	30	100	ND	Phosmet	30	100	ND
Cypermethrin 🤇	30	100	ND	Piperonyl Butoxide	30	100	ND
Daminozide	30	100	ND	Prallethrin	30	100	ND
Diazinon	30	100	ND	Propiconazole	30	100	ND
Dichlorvos	30	100	ND	Propoxur	30	100	ND
Dimethoate	30	100	ND	Pyrethrins	30	100	ND
Dimethomorph	30	100	ND	Pyridaben	30	100	ND
Ethoprophos	30	100	ND	Spinetoram	30	100	ND
Etofenprox	30 <	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30 <	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
Fludioxonil	30	100	ND	Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/13/2024

Tested By: Anthony Mattingly Scientist


Date: 05/13/2024 Date: 05/09/2024 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/13/2024

Tested By: Anthony Mattingly Scientist

Date: 05/13/2024 Date: 05/09/2024 Date: 05/09/2024 Date: 05/09/2024 Date: 05/09/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

Sample ID: SA-240425-39149 Batch: 19APR2024-GE Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):		d: 04/30/2024 ted: 05/13/2024	Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235
Microbials by PCR and Pl	ating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
Total aerobic count	10	ND	
Total coliforms	10	ND	
Total coliforms Generic E. coli	10 10		
		ND	Not Detected per 1 gram

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 05/13/2024

Tested By: Mario Aguirre

Lab Technician Date: 05/07/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

Sample ID: SA-240425-39149 Batch: 19APR2024-GE Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 04/30/2024 Completed: 05/13/2024 Client 3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Residual Solvents by HS-GC-MS

	LOD	LOQ	Result		LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane		29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 05/13/2024

Tested By: Kelsey Rogers

Scientist Date: 05/07/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

8 of 8

Delta 8 THC Vape Cartridge - 1 ml, Gelato

Sample ID: SA-240425-39149 Batch: 19APR2024-GE Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 04/30/2024 Completed: 05/13/2024 Client

3Chi 275 Medical Dr #857 Carmel, IN 46082 USA Lic. #: 18_0235

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (ppn	n) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Bifenazate	5000	Metalaxyl	15000
Bifenthrin	500	Methiocarb	30
Boscalid	10000	Methomyl	100
Carbaryl	500	Mevinphos	30
Carbofuran	30	Myclobutanil	9000
Chloranthraniliprole	40000	Naled	500
Chlorfenapyr	30	Oxamyl	200
Chlorpyrifos	30	Paclobutrazol	30
Clofentezine	500	Permethrin	20000
Coumaphos	30	Phosmet	200
Cypermethrin	1000	Piperonyl Butoxide	8000
Daminozide	30	Prallethrin	400
Diazinon	200	Propiconazole	20000
Dichlorvos	30	Propoxur	30
Dimethoate	30	Pyrethrins	1000
Dimethomorph	20000	Pyridaben	3000
Ethoprophos	30	Spinetoram	3000
Etofenprox	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500
Fludioxonil	30000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppl	b) Analyte	Limit (ppb)
BI	5	B2	5
GI	5	G2	5
Ochratoxin A	5		

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.